The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1
نویسندگان
چکیده
Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1(+) phenotype) or not (TTSS-1(-) phenotype). Here, we studied in vitro the TTSS-1(+) phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1(+) phenotype grew slower than cells of the TTSS-1(-) phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1(+) subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1(-) cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype.
منابع مشابه
Role of Salmonella Pathogenicity Island 1 protein IacP in Salmonella enterica serovar typhimurium pathogenesis.
Gram-negative bacteria, including Salmonella enterica serovar Typhimurium, exploit type III secretion systems (T3SSs) through which virulence proteins are delivered into the host cytosol to reinforce invasive and replicative niches in their host. Although many secreted effector proteins and membrane-bound structural proteins in the T3SS have been characterized, the functions of many cytoplasmic...
متن کاملAntibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates.
Traditional Chinese Medicines (TCMs) have been historically used to treat bacterial infections. However, the molecules responsible for these anti-infective properties and their potential mechanisms of action have remained elusive. Using a high-throughput assay for type III protein secretion in Salmonella enterica serovar Typhimurium, we discovered that several TCMs can attenuate this key virule...
متن کاملIsolation and Detection of Virulence factors of Salmonella typhimurium and Salmonella enteritidis
Plasmids play an important role in the virulence and antibiotic resistance of Salmonella. Salmonella carry plasmids having different size and number. Plasmid profile analysis of single isolates of Salmonella typhimurium and Salmonella enteritidis revealed the presence of 4- plasmid profiles. Salmonella serovars produce several Type III secretions including Sop-E and Sop –B. Soap E is detected b...
متن کاملOmeprazole antagonizes virulence and inflammation in Salmonella enterica-infected RAW264.7 cells.
The proton pump inhibitor omeprazole reduced the intracellular replication of Salmonella enterica serovar Typhimurium in RAW264.7 cells without affecting bacterial growth in vitro or the viability of the host cells. The mechanism was bacteriostatic and interfered with replication mediated by the virulence-associated SPI2 type III secretion system. The proton pump inhibitor bafilomycin A(1), in ...
متن کاملIn vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines.
Bacterial vectors may offer many advantages over other antigen delivery systems for cancer vaccines. We engineered a Salmonella typhimurium vaccine strain to deliver the NY-ESO-1 tumor antigen (S. typhimurium-NY-ESO-1) through a type III protein secretion system. The S. typhimurium-NY-ESO-1 construct elicited NY-ESO-1-specific CD8+ and CD4+ T cells from peripheral blood lymphocytes of cancer pa...
متن کامل